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A central problem in modeling protein and other polymer structures is the generation of
self-avoiding chains which obey a priori distance restraint information which could include
a folding potential function. This problem is usually addressed with a lattice model or a
torsion space model of the polymer. Exhaustive searches in these spaces are of necessity
exponentially complex. A new computer algorithm for modeling polymers and polymeric
systems is described. This algorithm is a randomized algorithm based on a self-assembling
or Kohonen neural network. Given a defined chain topology, a defined spatial extent, and a
prior probability distribution, it finds a set of coordinates which reproduce these properties.
The convergence rate of the algorithm is linear with respect to the number of distance terms
included. Modifications to the standard Kohonen algorithm to include a defined spatial
metric, and a modified update rule improve the convergence of the standard algorithm and
result in a highly efficient algorithm for building polymer models which are self avoiding
and consistent with prior probability information and interatomic distance restraints.

1. Introduction

The computational problem of modeling protein or polymer structure from min-
imal data is difficult. The trivial algorithm of searching all the free internal torsion
angles of the polymer is at best exponential in time and a member of the NP-hard
class of problems. When there are sufficient data numerical techniques like distance
geometry [5] and embedding or homotopy methods [2,7,8] can be effective. However,
these approaches do not work well when the data are sparse or inconsistent. In this
case there may not be a unique solution, and using a method which can produce a
set of solutions consistent with the prior knowledge will be important. A new algo-
rithm for searching conformational space is described in this paper. This algorithm,
based on Kohonen neural networks [11], is efficient and well behaved with both highly
determined problems and poorly determined problems.

Polymer modeling requires several assumptions. First, there is a defined chemical
structure for the polymer. The chemical structure defines the spatial relationship be-
tween atoms on a small scale, but is not sufficient in itself for determining long range
or large scale structure. Second, the polymer folds into a compact self-avoiding struc-
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ture with a low probability of knots. Some statistical information about this compact
structure may be known, such as radius of gyration or degree of crystallinity, and this
information can be used to specify a prior distribution for the atomic positions. Third,
some large scale information might be known about the structure. This could include
quite detailed knowledge such as distance restraints derived from nuclear Overhauser
effects (NOE) or known similar structures, but could also include more local data
such as predicted secondary structure in proteins. An effective algorithm for modeling
polymer structure must combine these sources of information and produce a structure
or family of structures which reproduce the prior knowledge.

Kohonen networks work by choosing weights (node or atomic positions) so that
the network spans a given spatial range. The networks are trained by trial against ran-
domly chosen points from the spatial range by moving the node closest to the random
point towards the random point and moving the neighbors of the node towards the
random point as well. These networks are self-assembling because they automatically
become ordered during the training phase. The specific choice of random points, the
connection between nodes, and the specific update rule depend on the application of the
network. For example, the solution to the traveling salesman problem can be approxi-
mated by using a closed circular loop for the node topology, choosing the cities as the
random points, and using an appropriate update rule [9]. The traveling salesman prob-
lem is a classic NP-complete problem, and the performance of Kohonen networks on
it shows that they are able to approximate solutions of NP-complete problems. When
points are chosen from an area or volume with a uniform distribution and a linear chain
is used, the chain fills the area or volume with a space-filling curve similar to a Koch
or Peano curve. These curves are reminiscent of the way a polymer folds and suggest
a natural isometry between the appropriate Kohonen network and polymer folding.

2. Methods

The algorithms presented below were implemented in AMMP [6] and tested
on the systems described in the results section. The routines were written in C and
compiled on either Digital Unix, GNUcc or Microsoft C++ for Windows 95/NT for
testing on a DEC Alpha workstation, a generic Linux PC, or a Windows PC. The
current version of the AMMP potential set, version SP4, was used [14,15]. The SP4
set is derived from the UFF potential set [12]. Distance restraints were implemented
with a split biharmonic formalism. The potential was zero for distances between a
lower and upper bound, and the deviation from the lower or upper bound had an
independent quadratic force constant.

3. Algorithms

For clarity, the standard Kohonen algorithm is presented first, then the algorithm
used for including distance restraints is developed and finally the modified Kohonen
algorithm is presented.
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Standard Kohonen algorithm
The pseudo-code for the standard Kohonen network algorithm is presented below.

Initialization:
Define a domain (a region in area or space)
Define connections between nodes
Define an internode weight function (Λ)
Define a prior distribution for random number choice (typically uniform)
Initialize the random number generator
Set the node values (or weights) to random values inside the domain
Set the relaxation constant k

Iterate until no change:
Choose a random point in the domain (cp)
Find the closest node
Update the node values

for the closest node
x := x+ k(cp − x)

for its neighbors
x := x+ kΛ(cp − x)

(optional) reduce the value of k

Λ is typically a bell-shaped function of the lexical distance between nodes. For
example, in a one-dimensional network the nodes adjacent to node j, (j + 1, j − 1),
could be updated with weight 0.5k and the other nodes are not changed. In a two-
dimensional network the neighbors of node (j, k) (j ± 1, k) and (j, k ± 1) would be
updated.

This algorithm readily converges for linear chain topology [11,13]. However,
when the chain topology is higher dimensional (i.e., 2D, 3D or fractal dimension),
convergence can fail and result in a knotted solution. The standard algorithm cannot
include information about distances between nodes; it can only include the information
that nodes are linked together. This causes the standard algorithm to have both poor
convergence to a desired spatial structure (i.e., the bond lengths are wildly inaccurate)
and to fail to converge if the polymer model is higher than linear dimension (i.e., the
structure is knotted). A higher than linear dimension (a fractal dimension) occurs
when distance restraint information relates one part of a chain to another as in the use
of NOE distance restraints to determine a protein structure from NMR data. These
drawbacks are addressed with a modified update rule. However, in order to present
the modified update rule, a graph relaxation algorithm for distance range constraints
must be developed.

Graph relaxation algorithm for distance range constraints
A system of distance range constraints is a set of linear inequalities of the form

|xi − xj| 6 Dij ,
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where xi, xj are coordinates and Dij is the distance between them. This linear system
can be re-notated as a constraint graph [4] as long as the distances obey the triangle
inequality. The coordinates (x) are the minimum path length to each vertex of the
constraint graph. These can be found by the Bellman–Ford algorithm provided the
constraint graph has no negative weight cycle (i.e., no combination of the Dij is
less than zero). The Bellman–Ford algorithm uses relaxation to find the solution.
Relaxation examines each pair of vertexes and chooses the best local solution.

In the model building version of the Bellman–Ford algorithm the graph consists
of the known distances between atoms due to bond lengths, covalent angles, van der
Waals exclusions, and prior distance restraints. The relaxation step consists of looping
through the atoms and for each atom moving all the other atoms to satisfy the distance
terms. A damped relaxation was found to be more stable than full relaxation because
the equations are vector equations rather than scalar.

Pseudo-code for the Bellman–Ford relaxation algorithm

Initialization:
Define the distances to be met
Define a damping constant K (typically 0.5 when relaxation is used on its own)
Choose a “random” starting model

Iterate:
For each atom in the model (xi)

find the other atoms in the model which have distance constraints
if (nonbonded < 4 Å or bond, angle, distance restraint > target value) then
move the atoms along the vector between them to satisfy the constraints

Set the other atoms to obey any chirality terms
xmoved := xold +K · error in target · (xold − xi)/|xold − xi|

The iterations are repeated until the structure no longer shifts. This algorithm is
much faster than the previously reported hybrid Krylov algorithm [7] because there
are no line searches. However, run on its own it will produce a distorted structure
and requires further optimization to produce a high quality model. The Bellman–Ford
algorithm will build models from sets of distance constraints, but does not converge
well from all possible starting points. There are some especially bad starting points,
such as all atoms equal to zero or in a line, where the Bellman–Ford algorithm will
converge very slowly. It is also difficult to add prior information such as a radius of
gyration to the algorithm. The algorithm is linear in complexity when used with bond,
angle, and distance restraints, but the algorithm will not produce a self-avoiding chain
without checking all pairs of atoms. The algorithm is quadratic in complexity when
finding a self-avoiding polymer chain because all pairs of atoms must be checked for
self-avoidance. This can make it slow when there are many atoms. However, the
relaxation algorithm used in the iteration forms the basis for the modified update step
which makes the Kohonen network algorithm practical.
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Modified Kohonen algorithm
The modified Kohonen algorithm combines the standard Kohonen algorithm with

the relaxation algorithm and gradient tracking to produce an algorithm which has
defined spatial metric as well as a topological connectivity. The internode weight
function (Λ) is transformed to enforce the spatial metric.

The pseudo-code for the modified Kohonen network algorithm is presented below.

Initialization:
Define a domain (a region in area or space)
Define connections between nodes
Define a prior distribution for random number choice (typically uniform)
Initialize the random number generator
Set the node values (or weights) to random values inside the domain
Set the relaxation constant k

Iterate until no change:
Choose a random point in the domain
Find the closest node (cp)
Update the node values

for the closest node
x := x+ k(cp − x)

for its neighbors
perform a relaxation step on the bond and distance terms from the closest node
constrain the locations of the relaxed atoms
perform one step of Steepest descent minimization on the whole structure

This algorithm converges to a structure which mostly has correct geometry and
satisfies the distance data. It is generally sufficient to use bond, angle, chiral, and
distance restraint terms during network training and to allow the nonbonded terms to
be treated by the convergence of the network to a uniform density of atoms. In the
absence of nonbonded potentials this algorithm is linear in complexity with respect
to the number of atoms which makes it quite efficient. If the nonbonded terms are
included, the algorithm is quadratic in complexity. When interrupted in mid-training,
parts of the geometry will be distorted so that further energy minimization is required.
This is performed with gradient optimization and limited use of molecular dynamics.

3.1. Least squares solution of distance terms

An alternative to the Bellman–Ford relaxation step is to use an analytic solution
for the positions of the local atoms. When there are more than four independent
distances from an atom to atoms of known position, there exists a unique least square
error position for the atom. Structures can be modeled by successively solving the
least square equations for each atom, in a manner which is exactly analogous to the
Gauss–Seidel solution of linear systems of equations. While this local solution can be
found numerically, it can also be determined by analytic means. Analytic techniques
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to find the least square error position can also be used for the relaxation step in the
Kohonen algorithm. For each distance the quadratic equation

(x− x0)2 + (y − y0)2 + (z − z0)2 = r2,

where x, y, z are the coordinates, x0, y0, z0 the fixed origin, and r the distance, can
be written. Expanding the quadratic terms and grouping common powers results in
the following linear equation in x2, y2, z2, x, y, z:

1 1 1 −2x0 −2y0 −2z0
1 1 1 −2x1 −2y1 −2z1
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Eliminating the x2, y2, z2 terms from n− 1 equations
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results in the n− 1 degree linear equations
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or

Ax = b.

These can be solved by least squares, with simplest approach being the construction of
the normal equations (ATAx = aTb, where T indicates matrix transpose), followed by
the Moore–Penrose inverse. (Since the rank of the normal equation is at most three, the
use of highly sophisticated methods like the singular value decomposition is somewhat
unnecessary.) Operationally it is useful to “polish” the solution with a small amount
of numerical optimization, since the simultaneous solution of the distance terms is
sometimes not possible. This operation is exactly analogous to iterative improvement
of the solution of linear systems of equations.

It is possible to construct an overdetermined problem. For example, in homology
modeling distance restraints may be derived for many more pairs of atoms than are re-
quired to determine the structure. The Bellman–Ford relaxation algorithm can perform
badly when this is the case, because it may be unable to sort out a local neighborhood
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and relax the model to an unknotted form. In this case the least squares solution will
out-perform the simple Bellman–Ford relaxation. However, the least squares algorithm
on its own, like the Bellman–Ford relaxation step on its own, does not efficiently solve
distance restraint problems akin to those presented in this paper. For example, with
G protein, the least squares algorithm converges more slowly and results in poorer
quality geometry.

3.2. Energy minimization

After building the models with the modified Kohonen network, the structures
were further refined to produce the final models. A minimal annealing procedure was
used where energy minimization combined with relatively short runs of molecular
dynamics at moderate temperatures.

4. Results

Several examples will be used in order to demonstrate the utility of the modified
Kohonen neural net.

4.1. Kevlar

Kevlar is a synthetic polymer made from repeating units of p-dibenzoic acid
and p-diamino-benzene. This nonbiological example is included to demonstrate how
neural networks can be used to study the self-assembly of simple polymers from
a description of the local chemical structure. In complex biological polymers, this
description is generally not very interesting, but in synthetic and simple polymers the
statistical description of polymer structure rather than the structure of any individual
conformer is the essential question. The effect of choosing a larger prior distribution
is shown in figures 1(a) and (b) where uniform distributions with a 70 Å radius and
a 15 Å radius were used during the training. This allowed the generation of extended
and compact self-avoiding nonknotted polymer chains. Changing the parameters of the
prior distribution, or using a series of different seeds for the random number generation
will result in a family of related structures.

4.2. Naphthalene

In addition to the study of polymers the self association of monomeric molecules
can be studied with the Kohonen network. The algorithm is useful for studying molec-
ular assemblies without making prior assumptions of crystallinity or long-range order.
Figure 2 shows a 180 Å “wire” made of naphthalene with this algorithm. Face-to-face
packing is seen in the “wire” and in larger bulk models. This approach can be used
to study the onset of order in quasi-crystalline systems.
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(a)

(b)

Figure 1. (a) An extended conformation of a kevlar 24-mer. It was generated by the Kohonen algorithm
with a large prior distribution. (b) A compact self-avoiding nonknotted conformation of the kevlar
24-mer. Generating compact self-avoiding conformations is a more difficult problem than generating
extended conformations. The Kohonen algorithm has converged to one. These figures show the algorithm
converges to self-avoiding chains without the use of explicit nonbonded terms in the potential energy

function.
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Figure 2. A 180 Å “wire” of naphthalene is shown. It was generated with a long cylindrical prior and
shows typical face-to-face packing. Similar self-associations are seen when a compact prior is used.

4.3. Cellulose fiber bundles

The construction of models for amorphous quasi-ordered bundles of self-avoiding,
self-organizing polymers is a difficult task since it is not only necessary to be self-
avoiding, but to also avoid other fibers in the bundle. The Kohonen algorithm is well
suited to this task. To show this cellulose bundles were modeled from a description
of the covalent geometry and the constraints of being an extended chain with regular
conformation. Bundles of 10 20-mers of 1′,4′-polyglucose were generated for two
different bundle geometries. The 20-mers were forced to be extended with a 100 Å
distance restraint between the initial O1 atom and the final O4 atom. The conforma-
tional regularity was enforced with a variation of the swarm algorithm of Huber and
van Gunsteren [10] where the O6–O6(I + 1), O6(I + 1)–O6(I + 2) distances were
restrained to be the same as the average values in all the sugars. The O6–O6(I + 2),
O6(I + 2)–O6(I + 4) distances were also restrained.

Because the model required the alignment of highly asymmetric objects, the
calculation was performed by first building a self-avoiding model in a large volume
and then shrinking that volume down to the final one. This produces a series of models
which mimic condensation to an ordered state. Pictures of the compact and extended
fibrils are shown in figure 3. Regular, helical chains bundled into an ordered fibril
are produced for both staggered and unstaggered geometries. The helicity and regular
structure are a consequence of the local geometry of the sugars.

4.4. G protein from experimental NOE data

Proteins are a particularly important class of polymers. Unlike simple polymers,
the twenty different monomers (amino acids) in proteins force the proteins to fold into
highly specific structures. Often protein structure is solved from distance data derived
from NMR, and the Kohonen algorithm should converge from this data. To demon-
strate convergence, G protein (pdb1pga.ent) data were taken from the benchmark set
which is supplied with XPLOR [1,3]. The data were divided into short-range restraints
which related adjacent residues and long-range restraints which related more distant
residues. The algorithm readily converges when supplied with complete data.

An interesting quirk was observed when modeling protein structures. As reported
previously [8], the distance restraints are unique up to the definition of a hand. Dis-
tance restraints can form either a left-handed or a right-handed system, and from the
viewpoint of the distances both solutions are correct. Therefore, the algorithm can
converge to either a left- or right-handed solution. Two strategies were evaluated for
this problem. These strategies were to either find a right-handed random structure and



134 R.W. Harrison / A self-assembling neural network for modeling polymers

(a)

(b)

Figure 3. A compact (a) and an extended (b) cellulose fibril generated with the Kohonen algorithm. For
visual clarity both the all-atom and C1 trace structures are shown. The models have helically intertwined
strands of twenty-long poly-1′,4′-glucose sugars. This shows that the Kohonen algorithm cannot only
generate single self-avoiding chains, but multiple self-avoiding chains and ensembles of the chains which
obey geometric prior information. The helicity and and approximate internal symmetry is a consequence

of the molecular geometry and not a directly imposed restrain on the system.

change it to meet the distance restraints or to meet the distance restraints and then
determine which hand of solution was found. With geometrically complete data, such
as high quality NOE data, the strategy of meeting the distance restraints first was found
to be faster. Therefore, for this test two passes of neural net training were performed.
The first found an approximate solution to the distance data for a racemic mix of amino
acids, and the second used that solution after the chirality was evaluated and the hand
of the structure inverted if needed.

The distance restraints were introduced with an arbitrary force constant of
100 kcal/mol/Å2. The final structure had no serious violations of the distance terms
with a total energy of 80 kcal/mol for 922 terms. Therefore, as far as the experimental
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Figure 4. The structure of G protein (pdb1pga.ent) and the structure found by the Kohonen algorithm
with NMR distance restraints (dashed line).

Figure 5. The structure of G protein and the structure found by the Kohonen algorithm with NMR
long-range and synthetic short-range restraints (dashed line).

data are concerned, the resulting structure is correct. The structure (figure 4) has an
RMSD on α-carbons with respect to pdb1pga.ent of 1.76 Å. A large part of this error
is a misplaced N-terminus (residue 1 is in error by 8 Å, residue 2 by 4 Å, and residue 3
by 0.5 Å). When two residues from the N-terminus are excluded, the RMSD drops to
1.168 Å which implies that the experimental structure has been recovered.

4.5. G protein from long-range NOE data and synthetic secondary structure data

Knowledge of the secondary structure alone was not sufficient for the algorithm
to converge to a recognizably correct structure. The long-range NOE data alone were
not sufficient to produce an accurate local structure (RMSD 3.10 Å). However, when
combined with long-range experimental data, enforcing secondary structure via “syn-
thetic” distance restraints was sufficient to solve the structure. The same script used
for the all-experimental data example was used, with the file names and distance re-
straints changed. The RMSD against pdb1pga.ent is 1.85 Å with most of the error in
the N-terminal two residues (figure 5).

4.6. Efficiency

The Kohonen neural network algorithm is efficient. This can be seen from both a
theoretical viewpoint, discussed below, and from the CPU times required. The G pro-
tein example required approximately 30 minutes on a 233 Mhz Pentium II processor
under Windows NT4.0. The four-dimensional embedding and related homotopy algo-
rithms we had implemented earlier [7,8] require several hours (6–12; the exact time
depends critically on the schedule for removing the fourth dimension or relaxing the



136 R.W. Harrison / A self-assembling neural network for modeling polymers

homotopy) for the same run and do not converge to as good a solution as the neural
network.

Theoretical analysis of the complexity of the algorithms shows why it is efficient.
The algorithm scales linearly with the number of trial points and the cost of updating
the local atomic positions (i.e., the internode weight function Λ). That is, if Np random
points are chosen consistent with the prior distribution, then Np evaluations of Λ are
required. The bond, angle, chirality, torsion, and distance restraint terms all scale
linearly with the number of atoms Na. Since the algorithm determines a self-avoiding
structure without the use of superlinear complexity terms like the nonbonded potentials,
they can be ignored until required for the final optimization of the structure. This
results in an overall complexity of O(NpNa) which is linear in both atom number and
number of random trials. At worst, if all pairs of atoms are required for the internode
weight function, the complexity of the algorithm would be quadratic in the number
of atoms, which compares well with the exponential complexity required for a direct
search algorithm and is the same complexity as gradient optimization or molecular
dynamics on the whole potential set.

4.7. Summary: Unanswered questions and future directions

The ability of the algorithm to converge from sparse or minimal data was demon-
strated. The absolute convergence to a unique structure from any sparse data set was
not. It is still necessary to define the appropriate geometric conditions that are required
for a data set to be uniquely convergent. By changing the seed of the pseudorandom
number generator a family or ensemble of structures can be generated if the data are
not sufficient to uniquely determine the structure.

The algorithm can be applied to problems in molecular modeling where distance
information and prior probability distributions are known. While it is well adapted
to polymeric problems, it readily handles systems of independent molecules. The
application of this algorithm to homology modeling and ab initio protein folding is
being developed.
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